Example Proofs Involving Divisibility (NTS = "Need to Show")
To Prove: For all integers $m$ and $n$, if $6 \mid m$ and $4 \mid n$, then $2 \mid(5 m-7 n)$.
Proof: Let $m$ and $n$ be integers.
Suppose that $6 \mid m$ and $4 \mid n$.
Then, $\mathrm{m}=6 \mathrm{k}$ and $\mathrm{n}=4 \mathrm{p}$ for some integers k and p , by definition of "divides".
$\therefore 5 \mathrm{~m}-7 \mathrm{n}=5(6 \mathrm{k})-7(4 \mathrm{p})$, by substitution, $=30 \mathrm{k}-28 \mathrm{p}$ by R.O.A. .
[ Need to show: $5 \mathrm{~m}-7 \mathrm{n}=2 \mathrm{t}$ for some integer t .]
From above, $5 \mathrm{~m}-7 \mathrm{n}=30 \mathrm{k}-28 \mathrm{p}$

$$
=2(15 \mathrm{k}-14 \mathrm{p}) \text { by R. O. A. . }
$$

Let $\mathrm{t}=(15 \mathrm{k}-14 \mathrm{p})$, which is an integer.
$\therefore 5 \mathrm{~m}-7 \mathrm{n}=2 \mathrm{t}$, by substitution, and t is an integer..
$\therefore 2 \mid(5 \mathrm{~m}-7 \mathrm{n})$ by definition of "divides".
$\therefore$ For all integers m and n , if $6 \mid \mathrm{m}$ and $4 \mid \mathrm{n}$, then $2 \mid(5 \mathrm{~m}-7 \mathrm{n})$, by Direct Proof. Q ED

Theorem 4.3.3 (Page 137): "Divisibility is Transitive;" that is, for all integers $a, b$, and $c$, if $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{c}$, then $\mathrm{a} \mid \mathrm{c}$.

Proof: Let $\mathrm{a}, \mathrm{b}$, and c be any integers.
Suppose $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{c}$. [NTS: $\mathrm{a} \mid \mathrm{c}$. NTS $\mathrm{c}=\mathrm{at}$ for some integer t .]
By definition of "divides," there exist integers $k$ and $p$ such that $b=a k$ and $c=b p$.
$\therefore \mathrm{c}=(\mathrm{ak}) \mathrm{p}$ by substitution of b by (ak) in the equation $\mathrm{c}=\mathrm{b} \mathrm{p}$,
= a (kp) by R.O.A.
Let $\mathrm{t}=(\mathrm{kp})$, which is an integer, because products of integers are integers.
$\therefore \mathrm{c}=\mathrm{at}$ by substitution, and t is an integer.
$\therefore$ a|c, by definition of "divides".
$\therefore$ For all integers $\mathrm{a}, \mathrm{b}$, and c , if $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{c}$, then $\mathrm{a} \mid \mathrm{c}$, by Direct Proof.
Q E D

To Prove: For all integers $a, b$, and $c$, if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
Proof: Let $\mathrm{a}, \mathrm{b}$, and c be any integers. Suppose that $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{a} \mid \mathrm{c}$.

Then, $b=a k$ and $c=a p$ for some integers $k$ and $p$ by definition of "divides".
$\therefore(\mathrm{b}+\mathrm{c})=\mathrm{ak}+\mathrm{ap}$ by substitution,
$=a(k+p)$ by R. O. A.
$=a t$, where $t$ is the integer such that $t=(k+p)$.
$\therefore(\mathrm{b}+\mathrm{c})=\mathrm{at}$, and t is an integer.
$\therefore \mathrm{a} \mid(\mathrm{b}+\mathrm{c})$ by definition of "divides."
$\therefore$ For all integers $\mathrm{a}, \mathrm{b}$, and c , if $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{a} \mid \mathrm{c}$, then $\mathrm{a} \mid(\mathrm{b}+\mathrm{c})$, by Direct Proof. Q E D

