To Prove: For all integers m and n, if $6 \mid m$ and $4 \mid n$, then $2 \mid (5m - 7n)$.

Proof: Let m and n be integers. Suppose that $6 \mid m$ and $4 \mid n$. Then, m = 6k and n = 4p for some integers k and p, by definition of "divides". $\therefore 5m - 7n = 5(6k) - 7(4p)$, by substitution, = 30 k - 28 p by R. O. A. .

[Need to show: 5 m - 7 n = 2 t for some integer t.]

From above, 5 m - 7 n = 30 k - 28 p= 2(15 k - 14 p) by R. O. A..

Let t = (15 k - 14 p), which is an integer.

- $\therefore 5m 7n = 2t$, by substitution, and t is an integer.
- \therefore 2 | (5m 7n) by definition of "divides".
- :. For all integers m and n, if $6 \mid m$ and $4 \mid n$, then $2 \mid (5m 7n)$, by Direct Proof. Q E D

Theorem 4.3.3 (Page 137): "Divisibility is Transitive;" that is, for all integers a, b, and c, if a | b and b | c, then a | c.

Proof: Let a, b, and c be any integers.

Suppose $a \mid b$ and $b \mid c$. [NTS: $a \mid c$. NTS c = a t for some integer t.]

By definition of "divides," there exist integers k and p such that b = a k and c = b p.

 $\therefore c = (ak)p \text{ by substitution of } b \text{ by } (ak) \text{ in the equation } c = bp,$ = a (kp) by R. O. A..

Let t = (k p), which is an integer, because products of integers are integers.

 \therefore c = a t by substitution, and t is an integer.

- \therefore a | c , by definition of "divides".
- \therefore For all integers a, b, and c, if a | b and b | c, then a | c, by Direct Proof.

To Prove: For all integers a, b, and c, if $a \mid b$ and $a \mid c$, then $a \mid (b + c)$.

Proof: Let a, b, and c be any integers. Suppose that $a \mid b$ and $a \mid c$.

Then, b = a k and c = a p for some integers k and p by definition of "divides".

∴ (b+c) = ak + ap by substitution,
= a(k+p) by R. O. A.
= a t, where t is the integer such that t = (k+p).
∴ (b+c) = a t, and t is an integer.
∴ a|(b+c) by definition of "divides."

 \therefore For all integers a, b, and c, if a | b and a | c, then a | (b + c), by Direct Proof.